
Design Patterns applied to Web Programming in

PHP

Paul A.J. Braam
Vrije Universiteit van Amsterdam

Faculty of Sciences
Department of Computer Science

stud.nr. 1123270
pajbraam@cs.vu.nl

14th March 2004

Abstract

Design is important and can be very usefull in web programming
in PHP. I got interested in solving programming problems by applying
patterns to PHP. Applying general OO-patterns to PHP is not always
as easy as it seems to be. I adapted three such patterns for PHP: Sin-
gleton, Stragegy and Model View Component(MVC). I also introduce
another pattern that I wrote specially for PHP: SessionObject.

1

Contents

1 Introduction 3

2 About PHP 3

3 PHP and Design 4

4 Introduction to Design Patterns 4

5 Layers in Web Programming 5

6 Common web programming problems 5

7 Design Patterns for Web Programming in PHP 6
7.1 Singleton pattern . 6
7.2 Strategy pattern . 8
7.3 Model View Controller pattern 10
7.4 SessionObject pattern . 14

8 Problem and Pattern matching 16

9 Conclusion 16

2

1 Introduction

A few years ago I did a lot of work in web programming (building web
applications like web shops as http://www.casspijkers.nl) in PHP. While
programming I faced a lot of problems. For all these problems I came
up with my own solution. Of course it was crazy to find solutions to the
problems myself because most web programmers will face the same problems
and we don’t want to reinvent the wheel again and again and yes...again.

The solution to this problem is patterns. While looking on the web
I figured out that there is much work to do on defining patterns for web
programming especially for PHP. There are some sites providing patterns
for PHP, but most of them are of a bad quality. I found a lot of design and
implementation errors in those patterns.

Before I give a short introduction to design patterns I will make clear why
design in general is important for web programming. After the introduction
to design patterns I want to state some major web programming problems
(or: challenges). Related to those problems I will give some examples of
how design patterns can be used to overcome those problems.

2 About PHP

PHP stands for: PHP: Hypertext Preprocessor. It is a simple open source
server-side scripting language that is widely used on web servers. The cur-
rent version (PHP4) offers limited implementation of object-oriented pro-
gramming. It supports class definitions, member functions, and inheritance.
But it doesnt support multiple inheritance and real encapsulation (because
member attributes cant be privately defined). Also the support for poly-
morphism is in its infancy. With the upcoming introduction of version 5
most of these problems will be solved.

3

3 PHP and Design

Before talking about design patterns we should have a look at what a good
design can offer you while programming web applications. As I stated before,
PHP is a simple scripting language. Some people think that men should
never use objects because functions and simple pages will do. For some
situations this is certainly true (for a lot of OO criticism, see [15]), but in
others you might want a higher level of abstraction. Here are some features
that a good design can offer you. A good design can increase the following
properties:

• readability

• reusability

• simplicity

• modularity

• portability

• adaptability

• maintainability

• extendibility

As you can imagine most of these features are very important for web ap-
plications bigger than a few pages.

4 Introduction to Design Patterns

This essay is not about explaining what design patterns are, therefore this
introduction is rather short. For a better understanding of design patterns
see [1].

Design patterns are written descriptions of well-known solutions to com-
mon design problems. Design patterns are a form of reuse: if one person
writes it down, many people can use the same ideas in their own designs. A
design pattern consists of the following elements:

Name used to identify the pattern

Problem what problem is attacked with this pattern?

Context in what context should this pattern be applied?

Solution & Consequences the solution for the stated problem and its
consequences

4

5 Layers in Web Programming

Webprogramming is concerned with many layers. These are: human com-
puter interaction, interface design, information design, scripting, code li-
brary development, database design. We could envision them in the follow-
ing diagram:

human computer interaction

user interface design

information design

scripting

code library development

database design

A design pattern for web programming exists in one of these layers. It
is good to know at which layer the design pattern has to be applied. With
this layering you get insight to what extend the design patterns is language
or domain specific. Design patterns residing in the scripting layer will of
course be more language specific than one residing on the user interface
design layer.

6 Common web programming problems

Multiple Presentations: Most of the web applications are accessible via
the internet. That means that people from all over the world can ac-
cess these applications. Therefore its often important to offer multiple
presentations of the same application. Think for example about an in-
ternational website that needs support for different languages or needs
support for different currencies.

Navigation: One of the most important aspects in web design is navigation
and information design. Users need always to be able to recognise their
position within the website. In a site without a clear and structured
navigation it is hard to find what you are looking for.

There exist a lot of navigation structures nowadays. Choosing what
kind of navigation best fits your site is not always straightforward.

Database operations: Nearly every large website gets its content from
a separate database. It is very important to think about how you
are going to make use of that database; how you are going to access

5

it. For example: putting your SQL-queries directly in the PHP-page
where you need them is not a good way of using the database. If
the database structure changes, you have to manually update all the
separate queries in the different PHP-pages.

Authentication, sessions, etc.: User- or session tracking is done to pro-
vide personalized websites for the user. In earlier times, webprogram-
mers had to do the sessionhandling manually but since the introduction
of PHP4 there are several standard functions for automatic authenti-
cation and session tracking. Therefore it is not really a big problem
anymore.

7 Design Patterns for Web Programming in PHP

7.1 Singleton pattern

Name: Singleton

Problem: You need exactly one global instance of a class and a global point
of access to it.

Context: Any

Solution & Consequences: Make an encapsulated static variable holding
the single instance of a class. Provide a get-method that:

• has a static variable for holding the one and only instance

• instantiates the instance if it does not exist already

• returns the instance.

This method returns the one and only instance of the class. So from
the performance point of view you gain a lot. The singleton pattern
prevents the application for making unnecessary many objects, which
results in a performance gain.

Implementation: There are some problems with implementing the single-
ton pattern in PHP:

• In PHP4 it is not possible to define static variables in a class. But
we definitely need a static variable to store the instance. Happily
we can define static variables in a function.

• PHP did not support static methods but the latest version of
PHP4 you can just call a method like this: class::method(). This
is used in the implementation example.

Now, lets have a look at how an implementation would look like:

6

//

// This is the class of which you want only one instance

//

class yourClassName {

...

//

// This is your classcontructor

//

function yourClassName() {

...

}

//

// This is your helperfunction for retrieving the instance

//

function &getInstance() {

static $instance;

if (!isSet($instance)) {

$instance = new singleton();

}

return $instance;

}

function someMemberFunction() {

...

}

...

}

The helperfunction getInstance is the global point for accessing your
instance. Within your application you can now use your class like this:

$instance =& yourClassName::getInstance();

$instance->someMeberFunction();

Notice the ampersand (&) used in the assignment of $instance, this sign
is very important because it makes sure you get the object itself and not a
copy of it. Just the same story goes for the ampersand preceding the name
of the member function getInstance() in the declaration of the class.

While looking on the web I found several implementations of the single-
ton pattern for PHP that are not working, because they do not make use
of the ampersand. So be careful with implementing this pattern and make
sure that you test your implementation.

7

7.2 Strategy pattern

Name: Strategy

Problem: You need several different stategies that solve the same problem
to be easily interchangeable with each other. For example, a website
with support for multiple languages and currencies.

Context: Any

Solution & Consequences: Solution:

• Create a super class (Strategy) that is used as a shared interface
for the concrete strategy classes.

• Define a subclass (ConcreteStragegy) for each strategy needed,
that overrides the member functions of the super class.

• Create a reference in your PHP application to one of the sub-
classes (the concrete strategy that you need) and use this refer-
ence throughout your program.

The consequence is that in the PHP-application you can freely change
the reference from one subclass to another (from one concrete strategy
to another) because they now have the same interface.

PHP does not support interfaces, so you are not forced to stick to the
interface of the super class. It is your own responsibility to check if
you stick to the interface.

UML diagram:

Concrete Strategy A
 Concrete Strategy B

Strategy

Implementation: In this example implementation we want to print a list
of names. We want two strategies: one for printing the list lexico-
graphically ascending, and one for printing the list lexicographically
descending.

Here is a sketch of the implementation:

8

//

// Superclass (the interface class)

//

class printListInterface {

function execute($namelist) {

}

}

//

// The subclass (concrete strategy) for printing the list ascending

//

class printListAscending extends printListInterface {

function execute($namelist) {

// Sort \$namelist in lex. ascending order and

// print the list

...

}

}

//

// The subclass (concrete strategy) for printing the list descending

//

class printListDescending extends printListInterface {

function execute($namelist) {

// Sort $namelist in lex. descending order and

// print the list

...

}

}

Now you can make a reference in you PHP application to the concrete
strategy of your choice:

$printList = new printListAscending();

and use the reference:

$names[0] = ’Ralf’;

$names[1] = ’Paul’;

$names[2] = ’Frank’;

$printList->execute($names);

9

7.3 Model View Controller pattern

Name: Model View Controller

Problem: You want to be able to change the appearance(UI) of your web
application from time to time, or you want to offer multiple UIs for
the same application in an easy manner.

Context: Changing or multiple UIs for the same application

Solution & Consequences: Devide your application into 3 parts:

The Model (Procesing): the model is a representation of the data
and the possible operations on it.

The View (Output): the view renders the contents of the model. It
is a view on the model.

The Controller (Input): the controller translates interactions with
the view into actions to be performed by the model.

Implementation: This is a sketch of an implementation of a MVC-pattern
applied to a web shop. In this example the user can look up a product,
or add a product to the system.

The Model Component:

This class is like a database wrapper or database adaptor

class ShoppingModel {

//

// Retrieve the product from the database

//

function getProduct($id) {

...

}

//

// Store a product in the database

//

function addProduct($id, $name, $description, $price) {

...

}

}

10

The View Component:

The view class is responsible for generating HTML(the view on the model)

class ShoppingView {

var $model;

//

// Class contructor that stores the model

//

function ShoppingView($model) {

$this->$model = $model;

}

//

// Print HTML-header

//

function printHeader {

...

}

//

// Print HTML-footer

//

function printFooter {

...

}

//

// Print HTML-representation of a product

//

function printProduct($id) {

$view->printHeader();

$product = $this->$model->getProduct($id);

// Give the HTML representation of the product item.

// By printing a some HTML tags and properties of the product

...

$view->printFooter();

}

//

// Print HTML-representation of a message

//

function printMessage($message) {

$this->printHeader();

print($message);

$this->printFooter();

}

}

Let us have a look at the controller component. I found some imple-
mentations of the MVC-pattern for PHP (like the MVC-pattern at [11])

11

that have a separate class for the controller part. That class is used in the
PHP-file the user requested. This suggests that the controller class is the
controller component of the MVC-pattern. This is not a nice way to apply
this pattern to PHP.

In this way the controller class is just a subset of the functionality of the
controller component. The controller class and PHP file together are the
controller component in the MVC-pattern. Because the functionality done
in the PHP file, also belongs to the controller, it is the part that interacts
with the user.

A better way of applying the MVC-pattern is to look at the PHP-file as
the controller component, so the controller component is the PHP-file itself:

Model

(encapsulated data)

View
 Controller

(index.php)

C

h
a
n
g
e

d
a
t
a

Q

u

e

r
y

d

a

t
a

View selection

User

P

a

g

e

r

e

q

u

e

s

t

12

Continuing the implementation example:

The Controller Component(index.php):

// initialize the model

$model = new ShoppingModel();

// initialize the view

$view = new ShoppingView($model);

// Check what action is defined in the URL

switch ($_GET[’action’]) {

// Show a product

case ’show_product’:

$view->printProduct($_GET[id]);

break;

// Add a product

case ’add_product’:

$model->addProduct($_GET[id],$_GET[name],$_GET[desc],$_GET[price]);

$view->printMessage(’Product added!’)

break;

default:

$view->printMessage(’No action found!’)

break;

}

So possible calls to this PHP-page:

• Show product with id 5:

index.php?action=show_product&id=5

• Add the candy bar to the products:

index.php?action=add_product&id=10&name=Candy%20bar&descr=...

These calls are normally made by the same (if you extend this controller)
or other controllers(read: PHP-pages) with the same model and view.

With this implementation we have a separation of the model, view and
the controller. As you can see now, it is rather easy to plug-in a new View
class resulting in a new UI for your web application.

13

7.4 SessionObject pattern

All the previous patterns are projections of existing pattern onto PHP. I
mean, they are general (and mostly Object Oriented) patterns that are
adapted to be used in PHP. The now following pattern is a new pattern
that I would like to introduce. It is a solution that I have used very often
in my history as a web programmer.

Name: SessionObject

Problem: You are programming a web application that makes use of ses-
sions and you want to remember the information about the session
(throughout the session) in an organised and structured way. E.g.
keep the shopping basket content available throughout the session in
a web shop.

Context: Web applications with sessions. Session information has to be
available throughout the session.

Solution & Consequences: Create a class definition that represents the
information that needs to be available throughout the session. At the
top of each PHP-page:

• Start or continue a session.

• Register a session variable(for holding the session object)

• Check if a session object exists, if not: create an instance of the
class(defined earlier) and assign it to the session variable.

Now you can always access the session information in an organised
way(via an object) and that object will be available during the whole
session.

Normally objects do not live very long in php, because they only exist
during the time of processing the PHP-page (mostly just a fraction of
a second). When you call a page, the objects are created and they
are used for the processing of the page. After the result has been sent
back to the user, all variables, including the objects, will be lost. With
this pattern you register an object as a session variable. That means
that, after the processing of the page, the object is stored in a textfile
together with the rest of the sessioninformation. At the time you that
you load the session again(in another pagerequest), the object will be
loaded again and will be available in your application.

Implementation: Let us have a look at an example of an implementation.
This is a stripped version of a ShoppingBasket object that I used in
web shops strore the products chosen / selected by the user. In this
example I make use of a well known ShoppingBasket pattern.

14

//

// This class stores the selected products

//

class ShoppingBasket {

var $productArray;

var $numberOfProducts;

...

//

// Adds a product to the productArray

//

function addProduct($id) {

// Add product with id=$id to the productArray

...

}

//

// Returns the array with the selected products

//

function getProductArray() {

return $productArray;

}

...

}

Your PHP-pages have to begin with this(because the function session start()
must be called before any output is written):

// If a session already exist: load session variables or create a new session if none exists.

session_start();

// Register the ShoppingBasket object as a sessionvariable

session_register(basket);

// If the basket-object does not exist, create one

if (!IsSet($basket)) {

$basket = new ShoppingBasket();

}

// Use the ShoppingBasket

$basket->addProduct(5);

$basket->addProduct(7);

$products = $basket->getProducArray();

If you have more than a few pages you could make a procedure (e.g.
my session start()) containing these lines. Then you just have to call my session start()
at the beginning of each page.

I tried to mix this pattern with the singleton pattern. My idea was to
make the ShoppingBasket-object a singleton, so you do not have to check

15

for the existence of an instance in the PHP-pages. But unfortunately this
does not work like that in PHP. This because of the fact that the static
instance variable in the loaded class (the session class) is different to the
static instance variable of our class definition in the PHP-file.

8 Problem and Pattern matching

In the beginning of this essay I stated some common problems. Afterwards
I introduced a few PHP-patterns. In this section I want to make a matching
of problems to a few important patterns.

Multiple presentations MVC pattern see 7.3

Navigation this is not a typically PHP problem, for navigational patterns
see [6] and [9]

Database operations Adaptor pattern (GoF) see [1] (convert the database
interface to an easy to use interface by making use of an adaptor class)
not discussed in this essay, but the Adaptor pattern is easy to project
on PHP.

Authentication and sessions SessionObject pattern see 7.4

These are some matchings that I find very usefull. This is not inteded
to be an exhausting list.

9 Conclusion

At first sight projecting known patterns to PHP looks quite easy. But if
you take a closer look and try to implement such patterns in PHP you will
probably figure out that there are some more problems to solve than you
thought of in the beginning. That is why there are a lot of PHP patterns
floating over the internet with poor quality.

These problems are mainly due to the fact that PHP is not a real object
oriented language and that the most patterns are object oriented. So we
can conclude that patterns depend on language expressiveness. In the fu-
ture it will be easier to map these(OO-) patterns to PHP because with the
introduction of newer versions the OO support in PHP will become more
mature.

It is important to know that patterns do not have to be object oriented.
Because the godfathers of the patterns, the Group of Four (GoF) [1], wrote
their patterns for OO, and mostly all patterns you find nowadays apply to
an OO-environment, some people think that patterns are always related to
OO. But this is not true; see for example: patterns for functional strategic
programming, see [14]

16

The first three patterns I described in this essay (the singleton, strategy
and the mvc) are existing patterns (for the first two see [1]) that I have
adapted for PHP. The implementation is made specific for PHP, but the
concept of the patterns are generally applicable. This is in contrast to the
last pattern (the SessionObject pattern see Section 7.4) that I wrote specially
for PHP (so it is no adaptation of an existing pattern).

I think that these four patterns are very useful to PHP-programmers.
Years ago, I did a lot of PHP-programming myself, but never saw some
of these patterns. If I had seen these patterns in that time, I would have
gained a lot of time with figuring out what the best solution was to a given
problem.

References

[1] Erich Gamma, Richard Helm,Ralph Johnson, and John Vlissides. De-
sign Patterns: Elements of Reusable Object-Oriented Software, Addison
Wesley (1994).

[2] G. Rossi, D. Schwabe and A. Garrido. Design Reuse in Hypermedia Ap-
plications Development, Proceedings of ACM International Conference
on Hypertext (Hypertext97), ACM Press (1997).

[3] Michael J. Flynn. Introduction to ”Influence of Programming Tech-
niques on the Design of Computer”, Proceedings of the IEEE, VOL.
85, NO. 3, March 1997.

[4] A. Garrido, G. Rossi, and D. Schwabe. Patterns Systems for Hyperme-
dia, Proceedings of PloP97 (1997), Available at:
http://st-www.cs.uiuc.edu/users/hanmer/PLoP-97.html

[5] F. Lyardet, Gustavo Rossi and D. Schwabe. Patterns for Dynamic Web-
sites, Proceedings of PloP98 (1998), Available at:
http://jerry.cs.uiuc.edu/ plop/plop98/

[6] G. Rossi D. Schwabe F. Lyardet. Improving Web Information Systems
with Navigational Patterns, Available at:
http://www8.org/w8-papers/5b-hypertext-
media/improving/improving.html

[7] J. Conallen. Building Web Applications with UML, Addison-Wesley
(2003)

[8] J. Lam. Introduction to Design Patterns Using PHP, (2003), Available
at:
http://www.devarticles.com/c/a/PHP/Introduction-to-Design-
Patterns-Using-PHP/

17

[9] The Hypermedia Design Patterns Repository Website, Available at:
http://www.designpattern.lu.unisi.ch/

[10] L. atkinson. Applying patterns to PHP, (2001), Available at:
http://www.zend.com/zend/trick/tricks-app-patt-php.php

[11] The phpPAtterns Website, Available at:
http://www.phppatterns.com/

[12] The official PHP Website, Available at:
http://www.php.net/

[13] T. Converse, J. Park. PHP Bible 2nd Adition, John Wiley & Sons (2002)

[14] R. Lämmel, J. Visser. Design Patterns for Functional Strategic Pro-
gramming Proc. of Third ACM SIGPLAN Workshop on Rule-Based
Programming RULE’02, ACM Press (2002), Available on:
http://www.cs.vu.nl/Strafunski/dp-sf/

[15] Object Oriented Programming Oversold!, Available at:
http://www.geocities.com/tablizer/oopbad.htm

18

